Metal Recovery and Preconcentration by Aminopolycarboxylic Acid modified Silica Surfaces
Abstract
This study focuses on the adsorption and preconcentration of various metals by silica gel surfaces modified with aminopolycarboxylic acids namely ethylenediaminetetraacetic acid or diethylenetriamine-pentaacetic acid. The adsorption performance of the studied materials was determined in mixed metal solutions and the adsorption isotherm studies were conducted for cobalt, nickel, cadmium, and lead. The results were modeled using various theoretical isotherm equations, which suggested that two different adsorption sites were involved in metal removal although lead showed clearly different adsorption behavior attributed to its lowest hydration tendency. Efficient regeneration of the adsorbents and preconcentration of metals was conducted with nitric acid. Results indicated that the metals under study could be analyzed rather accurately after preconcentration from both pure, saline and ground water samples.